ECS271 Machine Learning and Discovery
Project Report - Quick-draw Doodler

Brandon Pardi, Prasannadatta Kawadkar, Robin Martin
Department of Computer Science
University of California, Davis, CA 95618
Email: {bmpardi, ppkawadkar, obmartin} @ucdavis.edu

Abstract—Here we present QuickDraw-Doodler, a varia-
tional autoencoder (VAE) designed to incorporate and explicitly
model the temporal information as well as spatial in hand-drawn
sketches. Unlike much of the previous work, which has been
focused mainly on constant progressing vector representations,
our method introduces an additional temporal dimension (At)
to capture the dynamic speed of movement in humans’ drawing
patterns. Such a temporal aspect allows the model to learn
not only what is drawn but how it’s drawn. By integrating a
Mixture Density Network (MDN) that accounts for both spatial
and temporal dynamics, our model captures finer-grained motion
characteristics and can generate more temporally coherent se-
quences. We employ teacher forcing for stable training, as well as
a variational framework that leverages latent space sampling for
diverse and robust sketch generation. Furthermore, a lightweight
classifier is trained for sketch category recognition for efficient
and accurate classification. We outline a framework for sketch
generation and recognition, and delineate the methodology of our
data processing, model and training.

INTRODUCTION

Much of the preexisting work in generative modeling has
been applied to modeling pixel based images. However, hu-
mans hold a deeper representation of the world than a grid
of rgb values. We learn to associate more abstract shapes
and features to represent the world around us. These abstract
features we learn are more than just an end result of pixels on
a screen, as we learn to depict, and even communicate what’s
in our minds via hand-drawn sketches. These sketches can be
thought of as sequential vectors, that by themselves may be
meaningless, but when combined in the right way, can be a
method of communication. The ”QuickDraw Doodler” project
aims to learn this representation that humans have understood
from a young age. Our model is a novel extension to the exist-
ing SketchRNN [1] from Google. It is a similar architecture,
however we have adapted it to model temporal aspects of these
handwritten sketches on top of spatial aspects. Previously only
spatial modeling was done on the sequences, losing valuable
insight into the way humans draw doodles. Our goal it to
gain this temporal insight that has been lost in previous work,
while retaining the ability to learn spatial information as well.
We also designed an efficient Convolutional Neural Network
(CNN) to classify the end result of doodles with high accuracy,
where the challenge lies in balancing model performance with
computational efficiency.

The novel contribution we make in this paper is a model
architecture that is able to capture and learn the spatial and

temporal pattens of free hand drawn sketch sequences. In the
following sections we detail the dataset, methodology, results,
and key findings of these contributions, as well as discussing
future directions of this project.

RELATED WORK

SketchRNN introduced the idea of using a recurrent neural
network coupled with a latent variable model to generate
vector sketches. Subsequent works have incorporated atten-
tion, hierarchical structures, and disentangled representations.
However, explicit modeling of temporal variance—treating
the duration or timing of each stroke as a distributional
parameter—has remained underexplored. Our work extends
the SketchRNN pipeline by incorporating a time-distribution
parameter into the MDN decoder, allowing the model to
capture how drawing speed and stroke timing vary across
different objects and artistic styles.

DATASET

For training the CNN, we used Google’s simplified dataset
to classify images. However, for our RNN, we needed to
process the raw data from scratch in order to incorporate the
temporal component.

The original dataset format was Nx5, where each vector rep-
resented (X, y, pl, p2, p3), with x and y being the coordinates,
and pl, p2, and p3 representing pen states. For our RNN, the
data format was modified to Nx6, adding a time component
(t) so that each vector now represents (X, y, t, pl, p2, p3).
This change allowed us to capture the temporal dependency
of the doodles, as the model needed to learn not just the spatial
arrangement but also the progression of strokes over time.

As a result, every step of the data processing pipeline had
to be rewritten to account for this new structure. This included
adjustments to how the data was normalized, how deltas were
calculated, and how the sequences were padded to align with
the new time dimension.

o Full: Designed for the generative model, this structure
retains temporal information (At) and stores sketches as
sequences of (Az, Ay, At,p). All values are normalized
and converted into relative positions and times, enabling
the model to learn both temporal and spatial dynamics.
The Full dataset contains three classes, each with 50,000
samples.

« Simplified: Temporal data is removed, and the vector
data is rasterized into 2D arrays representing the orig-
inal 255x255 pixel sketches. This structure includes 10
classes, with 10,000 samples per class.

+ Reduced: Derived from the Simplified dataset, images
are downscaled to 28x28 pixels using antialiasing, pre-
serving key features while minimizing computational
complexity. The Reduced dataset also includes 10 classes,
with 10,000 samples per class.

By incorporating temporal information and reorganizing
the dataset for diverse tasks, our modifications allow for a
more detailed analysis of how drawings evolve over time,
addressing a limitation of the original Quick, Draw! dataset.
These changes facilitate extensive evaluations of both sketch
generation and classification.

GENERATIVE MODEL ARCHITECTURE

Our model is a generative framework designed to produce
vector-based sketches by synthesizing pen strokes in sequence.
Unlike conventional approaches that focus mainly on the
spatial aspects of strokes, our model explicitly incorporates
a temporal dimension. Each stroke is represented not only by
its spatial displacement (dz,dy) and pen states, but also by
a temporal increment (dt) that captures the duration between
strokes. By integrating this temporal component into both the
latent representation and the output distribution, our model
can generate more dynamic and temporally coherent sketches.
In what follows, we detail the model’s architecture, including
the encoder, the latent variable, and the mixture density
network (MDN)-based decoder that predicts distributions over
(dz, dy, dt) and pen states at each time step.

Forward Encoder

Backward Encoder

LsTMCet 1
'3
LSTMCen2

Fig. 1. Schematic representation of the sequence-to-sequence variational
autoencoder (VAE) architecture for modeling stroke-based data. The encoder
consists of a bidirectional LSTM, with forward and backward pathways
processing the input and reversed input sequences, respectively. The hidden
states are passed through dense layers to compute the mean (x) and standard
deviation (o) of the latent space distribution. A latent vector (z) is sampled
using the reparameterization trick and transformed with a tanh activation. The
decoder reconstructs the sequence using a hierarchical recurrent architecture
with custom recurrent dropout layer normalized LSTM cells. Each cell
includes a dense layer for gate values that are then split into separate gates and
activated. The next hidden state receives layer normalization and dropout for
regularization. The final output layer generates the parameters of a Gaussian
Mixture Model (GMM), which predicts pen stroke points, incorporating both
spatial coordinates, temporal values, and pen state probabilities.

A. Encoder

The encoder is a bidirectional LSTM that processes the
sequence X and produces a latent representation. We con-
catenate the last forward hidden state and the first backward
hidden state:

heye = [TI)T; K1] € RzH-

From h,., we derive the parameters of a latent Gaussian
distribution:

B = W,uhenc + b,u;

A latent vector z € RZ is sampled using the reparameteri-
zation trick:

log 02 = Whene + by

e~ N(0,I).

B. Latent Vector and The Decoder

After obtaining the latent vector z from the encoder, we
condition the decoder on this global context. Initially, we map
z into hidden and cell states for the decoder LSTM. Unlike a
simple linear mapping, we now incorporate z more explicitly
by concatenating it with the transformed hidden states:

z=p+0o0Qe,

hy = tanh(Wp,z + by), c¢o = tanh(W,z + b,).

We then form the initial LSTM states by concatenating z with
these tanh-activated states:

hdec,O = [hO; Z],

This ensures that the latent vector z is embedded directly
into the initial conditions of the decoder, providing a stronger
and more persistent global conditioning signal.

At each subsequent timestep ¢, we form the decoder input
by also concatenating z with the previous output stroke:

Cdec,0 = [Co; Z]-

Vi = [x¢; 2],

where x;—1 = (dxy—1,dys—1,dti—1,De,0—1,Pt,e—1,Pe,e—1) 1S
the previously generated or ground truth stroke vector (includ-
ing time and pen states). The decoder then updates its states
for the next time step after applying dropout recurrently and
layer normalization.

C. Gaussian Mixture Model

The Decoder’s output is passed through a mixture density
network (MDN) layer to produce parameters for a Gaussian
mixture model (GMM) over (dz, dy, dt) along with a categor-
ical distribution over the pen states:

de ,dy dt de _dy _dt M
{7rk,t; Fgts B g3 ket Okt Ok 19 Okt Pk,t}k:la

Pt = (pdown,h Pup,t, pend,t) ’

where . ; are mixture weights, 4 and o are means and
standard deviations of the Gaussian components, pj ; is the
correlation between dz and dy, and p; defines the pen state
distribution.

D. Incorporating the Temporal Dimension

As discussed, each stroke in our model is represented by
(dz, dy, dt, p1, p2, p3) to capture both the spatial and temporal
dynamics of drawing. We opted to keep the spatial distri-
bution modeled together in a bivariate Gaussian distribution
with parameters dictated by preceding layers, and model the
temporal distribution as a standalone univariate distribution.
This decision was motivated due to the potential for spatial
deltas to be sampled from an unbounded distribution since
negative values are acceptable, while temporal values must
remain positive. This allowed us to enforce a constraint unique
to dt, in which we parameterize dt through a monotonic
transformation of an unconstrained variable. For example, if
the decoder predicts a parameter dt in (—00,), we transform
it using the exponential function to ensure dt = exp(dt) > 0
at all times. However as we will discuss in the results, this
method was not full proof with negative dt values still resulting
in the output. We will investigate if this is due to ineffectivity
of the method, or a flaw in the codebase.

CLASSIFICATION MODEL ARCHITECTURE

We enabled doodle categorization by implementing a con-
volutional neural network (CNN) architecture, which we call
classifierCNN, tailored to extract and harness the spatial fea-
tures inherent in hand-drawn graphics. The proposed architec-
ture has five convolutional layers with an increasing number of
filters—32, 64, 128, 256, and 512—where each layer applies
3 x 3 kernels, a stride of 1, and padding of 1, allowing features
to be extracted effectively while preserving spatial resolution.
Batch normalization is applied after each convolutional layer
to stabilize training and improve convergence, while ReLU
activations introduce non-linearity to capture complex patterns.

The model uses max-pooling layers following certain con-
volutional blocks to decrease the spatial dimensions, retaining
only the most salient features while controlling computational
complexity. An additional convolutional layer of 256 filters
was appended to increase the representational capacity of
the model, allowing it to capture fine-grained spatial details.
Dropout (set to 30%) is incorporated into the fully connected
layers to ensure robustness and prevent overfitting.

The architecture transitions from convolutional layers to two
fully connected layers with 512 and 256 neurons, respectively,
followed by a final classification layer. The derived spatial
features are transformed into high-dimensional embeddings
mapped onto predefined doodle categories.

We started with a simple two-layer CNN to evaluate its
performance and gradually increased the depth of the net-
work by adding more convolutional layers to improve feature
extraction and representational capacity. After experimenting
with three, four, and five-layered architectures, we finalized
the current five-layer design as it achieved a strong balance
between complexity and performance.

To optimize the model, we experimented with varying
hyperparameters such as dropout rates, learning rates, and
optimizers, and tested different techniques, including max-
pooling versus average pooling, and varying filter sizes (3 x 3,

5% 5). Data augmentation techniques such as random rotations,
flips, and scaling were also applied to enhance generalization.
These efforts helped refine the model into a lightweight and
efficient architecture.

While the accuracy of our classifierCNN is slightly lower
than Google’s deeper 9-layered CNN, our model remains
highly competitive and achieves comparable performance. Its
streamlined and resource-efficient design makes it particularly
well-suited for practical applications where computational
resources are limited, providing a robust alternative to deeper
architectures.

LoSs FUNCTIONS

The training objective for our model follows the Variational
Autoencoder (VAE) framework, which optimizes the Evidence
Lower BOund (ELBO) on the marginal likelihood of the data.
Conceptually, we want our model to reconstruct the observed
sequences of strokes and pen states—including the temporal
component—from a learned latent representation while also
encouraging the latent space to be well-structured. To achieve
this, we combine a reconstruction loss, derived from the
mixture density network outputs, with a Kullback-Leibler
(KL) divergence term that regularizes the latent distribution.

E. Reconstruction Loss

Our reconstruction loss measures how well the model’s
predicted distribution over (dz, dy, dt, p1, p2, p3) matches the
observed data. At each time step, the decoder outputs param-
eters of a Gaussian Mixture Model (GMM) for the spatial and
temporal increments, and a categorical distribution for the pen
states.

For a single timestep ¢, let

Y dt dz _dy

dz d dt
Th,ts Bi,ts Pits Bkt Ok t) Okt Ok, ts Pkt

denote the GMM parameters for M mixture components, and
let

Pdown,t s pup,tv pend,t

denote the pen state probabilities. Given the ground truth
stroke (dz;, dy:, dt;) and pen state vector (p;.1,Pt.2,Pt,3), We
define the reconstruction loss as the negative log-likelihood:

L: recon

T M
== Z llOg (Z Tk, N ((dzy, dys, di); pr, Zk))

t=1 k=1

3
+ Zpt,j IOg(pstate,t,j) ,
j=1

where N ((dzy, dy, dtt); pk, Xk) is the probability density
of the k-th Gaussian component evaluated at the observed
stroke increments, and psee,¢,; 1S the predicted probability for
the j-th pen state at time ¢.

Conceptually, this loss encourages the model to assign high
probability to the observed strokes and pen states. The mix-
ture model allows flexibility in capturing multimodal stroke
distributions, while the categorical term encourages correct

prediction of pen states (e.g., when to lift the pen or end the
sketch).

F. Kullback—Leibler Divergence Loss

The latent vector z is drawn from a Gaussian distribution
parameterized by (u,o?) predicted by the encoder. During
training, we encourage z to remain close to a standard
Gaussian prior N'(0,I). This is achieved by including a KL
divergence term:

z
1
£m=§;(u?+0?—logaf—l),

where Z is the dimension of the latent space. Conceptually, the
KL term ensures that the latent space does not drift arbitrarily
and that it remains smooth and well-structured. Without this
constraint, the model might overfit and produce latents that
are not generalizable. We also anneal the KL loss in order to
focus on reconstruction in the beginning, since that is most
important.

G. Overall Objective

The final loss function is the sum of the reconstruction and
KL losses:

L= »Crecon + ,BEKLv

where 3 is a weighting factor that can be used to balance
latent regularization against reconstruction fidelity. In standard
VAE training, § = 1, but adjusting this factor can help
achieve different trade-offs between producing high-quality
reconstructions and maintaining a well-structured latent space.

RESULTS

Generator Metrics Over Epochs
Distribution Comparison: dx - Epoch 51
JSD: 0.5213, WD: 0.4425

— ax Generated Data

Distribution Comparison: dy - Epoch 51
JSD: 0.5004, WD: 0.3964
Gy Generated Data
o Reat Data

Distribution Comparison: dt - Epoch 51
JSD: 0.2971, WD: 0.2929

Fig. 2. Distribution comparisons of the generated and real data for dz, dy, and
dt at Epoch 51. The dz and dy distributions align closely with the real data,
showing good modeling performance. However, the dt distribution exhibits
some discrepancies, indicating room for improvement in future work to better
capture the temporal dynamics. Metrics such as the Nomralized Jensen-
Shannon Divergence (JSD) and Wasserstein Distance (WD) are reported for
each variable.

Generator Losses Over Epochs

Total Loss KL Divergence Loss Reconstruction Loss

Wain wain Tain
| vai | 0003 vai val

| 00030

0.0025 ‘

\ ooono] ||
14{ | “ 14
| ooms{ ||

ooono { |
10 oo0os | | | 10

08 0.0000 08

Fig. 3. Generator loss metrics over epochs for training and validation sets.
Total loss, KL divergence loss, and reconstruction loss are plotted. The losses
generally decrease over time, demonstrating effective learning, though the
validation KL divergence exhibits instability. Further refinement of the training
process may address this instability.

Confusion Matrix

cat

1750

dog

1500

car

tree

1250

1000

Actual
flower house

- 750

fish

- 500

star

apple

-250

face

house flower fish star apple face
Predicted

@t dog car tree

Fig. 4. Confusion Matrix showing approx. 96% accuracy

CNN Metrics Over Epochs

Loss Accuracy

— Train Loss 984 — Train Accurac
0s Validation Loss — Validation Accuracy

961

Accuracy (%)

Fig. 5. Train and Validation loss and accuracy for cnn

APPLICATIONS

Temporal and spatial modeling integration in free-hand
sketches shows potential in several fields. In healthcare, the
model can decode the drawing of autistic people to provide
therapists with insight into emotions and thoughts that may

be difficult to communicate verbally; it also has potential for
mental health analysis by recognizing sketch patterns related
to emotional indicators such as stress, anxiety, or depression.
The system improves accessibility by allowing users with
disabilities to communicate and interact using simple drawings
as input.

It also has potential benefits for creative industries. Graphic
designers can turn initial sketches into professional-level dig-
ital products, so efficiency in the creative process will be
improved. Game creators can create character and object
prototypes, reducing the time spent designing and iterating
during the early stages.

Robots with the capability of interpreting human-drawn
sketches can communicate and interact better. Additionally,
the model can analyze user-generated sketches to uncover
trends and patterns in visual representation across different
cultures and demographics. This insight provides a opportunity
to study human sketching behavior in how people perceive and
represent objects through drawings.

Technology also has great value in the preservation and
research of cultural heritage. By digitizing and classifying
traditional art and symbols from various cultures, it aids
in safeguarding and studying these artifacts. Museums can
integrate sketch recognition into interactive displays, allowing
visitors to engage with historical artifacts through drawing,
creating a more immersive and educational experience.

These applications highlight the importance of this technol-
ogy in addressing real-world challenges, fostering innovation,
and promoting accessibility in diverse sectors.

FUTURE WORK

Future work for this project would primarily consist of
expanding the generator training set to more than a single
class. This would allow us to explore the latent space re-
lationship between different classes. It would be interesting
to see if we can morph the sketch of one class into another
by interpolating points between their respective latent vectors.
Additionally, we would like to investigate the full extent the
latent vectors represent high-level features by experimenting
with latent vector operations of various classes. e.g. can we
use the latent vectors to generate a human face onto a pig’s
body? These are both likely plausible given that the model is
trained with more attention to KL loss.

If we can perform latent vector operations, it would also
be interesting to explore our model’s capability to complete
unfinished sketches. By encoding the beginning of a sequence
for a sketch, we can then let the model complete the rest of
it and see what sort of creations it had come up with. There
is also the potential to add a temperature parameter to the
GMM sampling to control the model’s generative creativity
and see what it can come up with. The proposed CNN achieved
approximately 96% accuracy on the test set.

RESULTS AND CONCLUSION

Training the Variational Autoencoder (VAE) model pre-
sented computational challenges due to its large size, limiting

the training to 11 epochs. Although the model did not generate
fully coherent doodles, it showed early signs of learning,
including the generation of random squiggles. In preliminary
tests, we observed some alignment between the real and
generated data distributions for both spatial (dx, dy) and
temporal (dt) components, with initial metrics indicating some
level of correlation. However, the computational constraints
prevented us from training the model for longer periods to
achieve more coherent results.

We also implemented a Convolutional Neural Network
(CNN) using Google’s preprocessed dataset, achieving an
impressive 96% accuracy on the classification task. In contrast,
the VAE was trained on raw input data that we processed
to incorporate additional temporal information. While this
additional temporal aspect provided valuable insights into the
dynamics of human sketches, the limitations in training time
hindered the model’s ability to fully capitalize on this data.

These results underscore the potential of combining spa-
tial and temporal modeling in generative tasks, while also
highlighting the need for further computational resources and
longer training durations to achieve optimal results with the
VAE. Further work could involve expanding the generator’s
training set, improving latent vector operations, and experi-
menting with model enhancements to generate more coherent
sketches over time.

AUTHOR CONTRIBUTIONS

This project was comprised of many different components,
below are details of specific contributions from each author:

Brandon Pardi:

« Setup all code and file structure.
e Enums and CLI arguments and handling for parameters
and function calling.
e utils/get_data.py script:
— Download simplified data, and scale down with an-
tialiasing.
— Download raw pen stroke data.
e utils/image_rendering.py:
— Rasterize stroke/image data to display doodles.
— Animate the doodle strokes to visualize the path of
doodles with temporal dependence.
e utils/process_data.py —->
SequentialStrokeData class:
— Preprocess data — stroke-6 format.
* Misc small processing — clamping/filtering/trans-
posing, etc.
Z-score normalize sequence deltas.
One-hot pen states and add SOS/EOS tokens.
Random scale and augment sequences.
Sequence padding.

EE I 3

e models/vae.py —-> DoodleGenRNN class:
— Train/validation loops for VAE:
* Kullback-Leibler divergence loss (with annealing).

* Reconstruction loss.

— Setup all layers of VAE

— VAE methods: encode, reparameterize, decode, for-
ward, and latent space conditional sampling.

— Weight initialization for all VAE layers.

— All VAE loss metrics logging/visualization code.

— Approximation and plotting of real and generated data
distributions (normalized JSD and Wasserstein distance
metrics).

e models/mdn.py —> MDN class (initialized as attr of

DoodleGenRNN

— Handle Gaussian Mixture Model coefficients from de-
coder
— Reconstruction loss methods:

* Split GMM coefficients from VAE output and apply
Tikhonov regularization.
* Sample from bivariate distribution from GMM pa-
rameters for dx and dy.
* Sample from univariate distribution from GMM
parameters for dt.
* CCE loss for pen state one-hot.
* Combine them all for reconstruction loss.
e models/lstm.py ->
RecurDroplLayerNormLSTM for decoder:
— Custom LSTM similar to Torch implementation but
with recurrent dropout and layer normalization.
— Compiled with Torch JIT script for efficiency.

Prasannadatta Kawadkar:

o Designed a 5-layer CNN with increasing filters (32, 64,
128, 256, 512) using 3 x 3 kernels, ReLLU activation, and
batch normalization.

o Added max-pooling layers for dimensionality reduction
and dropout (30%) for regularization.

« Included two fully connected layers (512 and 256 neu-
rons) and a final classification layer.

« Implemented the CNN architecture in cnn.py and cre-
ated the train_cnn function in train.py for train-
ing.

« Developed classify.py for classifying doodles into
predefined categories.

« Modified CLI commands to support training and classi-
fication using the CNN.

o Experimented with filter sizes (3 X 3, 5 X 5), pooling
methods (max vs. average), and dropout rates (0.2, 0.3,
0.5).

« Tested different layer depths (2, 3, and 5 layers) and dense
layer configurations (256, 512, and 1024 neurons).

o Compared optimizers (Adam, SGD, RMSProp) and chose
Adam for faster convergence.

« Preprocessed input images to 28 x 28 for computational
efficiency while preserving features.

« Had major contribution in the final report and presenta-
tion for the project.

o Achieved a lightweight and efficient CNN with high

classification accuracy for doodles.
Robin Martin:

« Applied the RDP (Ramer-Douglas-Peucker) algorithm to
reduce points in curves while preserving shape, improv-
ing training speed:

— Tested multiple epsilon values (e.g., € = 0.2, ¢ =1,
€ = 2), balancing curve simplification and shape
preservation.

— Reduced an image of 235 points to 83 with e =1 and
to around 60 with € = 2, noting jaggedness at higher
simplifications.

— Set € =1 for optimal balance.

« Data Processing and Debugging:

— Altered sequence padding to match EOS tokens for
balancing p3 values.

— Corrected data normalization inconsistencies by re-
ordering steps to align delta calculations and normal-
ization for accurate formatting.

— Tested every step with print and/or animate to ensure
proper vector sizes and outputs.

— Noted negative time values after decoding.

— Removed repeat functions.

o Image Generation

— Added functions to reverse delta and normalization
after decoding to Animate function.

— Updated generation.py and main.py to inte-
grate vae.py

— Updated Animate function to accept tesnor values
by converting to .numpy

— Updated pen state column selection in Animate func-
tion to animate generated images of Nx6(expected
Nx4).

REFERENCES

[1] David Ha and Douglas Eck. A neural representation of sketch drawings,

2017.

